5,588 research outputs found

    Spin-charge separation at small lengthscales in the 2D t-J model

    Full text link
    We consider projected wavefunctions for the 2D tJt-J model. For various wavefunctions, including correlated Fermi-liquid and Luttinger-type wavefunctions we present the static charge-charge and spin-spin structure factors. Comparison with recent results from a high-temperature expansion by Putikka {\it et al.} indicates spin-charge separation at small lengthscales.Comment: REVTEX, 5 pages, 5 figures hardcopies availabl

    Gamma-ray line emission from Al-26 produced by Wolf-Rayet stars

    Get PDF
    The recent satellite observations of the 1.8 MeV line from the decay of Al-26 has given a new impetus to the study of the nucleosynthesis of Al-26. The production and ejection of Al-26 by massive mass-losing stars (Of and WR stars) is discussed in the light of recent stellar models. The longitude distribution of the Al-26 gamma ray line emission produced by the galactic collection of WR stars is derived based on various estimates of their radial distribution. This longitude profile provides: (1) a specific signature of massive stars on the background of other potential Al-26 sources, as novae, supernovae, certain red giants and possibly AGB stars; and (2) a possible tool to improve the data analysis of the HEAO 3 and SMM experiments

    Vertex routing models

    Full text link
    A class of models describing the flow of information within networks via routing processes is proposed and investigated, concentrating on the effects of memory traces on the global properties. The long-term flow of information is governed by cyclic attractors, allowing to define a measure for the information centrality of a vertex given by the number of attractors passing through this vertex. We find the number of vertices having a non-zero information centrality to be extensive/sub-extensive for models with/without a memory trace in the thermodynamic limit. We evaluate the distribution of the number of cycles, of the cycle length and of the maximal basins of attraction, finding a complete scaling collapse in the thermodynamic limit for the latter. Possible implications of our results on the information flow in social networks are discussed.Comment: 12 pages, 6 figure

    The Populist Constitutional Revolution in Israel

    Get PDF

    The Battle Over the Populist Constitutional Coup in Israel

    Get PDF

    The Paradox of Israel’s Coronavirus Law

    Get PDF

    A foam model highlights the differences of the macro- and microrheology of respiratory horse mucus

    Get PDF
    Native horse mucus is characterized with micro- and macrorheology and compared to hydroxyethylcellulose (HEC) gel as a model. Both systems show comparable viscoelastic properties on the microscale and for the HEC the macrorheology is in good agreement with the microrheology. For the mucus, the viscoelastic moduli on the macroscale are several orders of magnitude larger than on the microscale. Large amplitude oscillatory shear experiments show that the mucus responds nonlinearly at much smaller deformations than HEC. This behavior fosters the assumption that the mucus has a foam like structure on the microscale compared to the typical mesh like structure of the HEC, a model that is supported by cryogenic-scanning-electron-microscopy (CSEM) images. These images allow also to determine the relative amount of volume that is occupied by the pores and the scaffold. Consequently, we can estimate the elastic modulus of the scaffold. We conclude that this particular foam like microstructure should be considered as a key factor for the transport of particulate matter which plays a central role in mucus function with respect to particle penetration. The mesh properties composed of very different components are responsible for macroscopic and microscopic behavior being part of particles fate after landing.Comment: Accepted for publication in the Journal of the Mechanical Behavior of Biomedical Material
    corecore